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Abstract
In this note we demonstrate how minor changes in the timing of markets

and an improper choice of a household problem state variable in the money-in-
the-utility function models can dramatically change the equilibrium behavior
of the model, its impulse response functions to shocks and simulated second-
order moments. We also show how these minor changes in set-ups lead to
di�erent Fisher rules and money demands.
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1 Introduction

Despite the long-lasting and broad use of the money-in-the-utility function general

equilibrium models in monetary economics, the importance of the issues related

to the timing of markets, trading, and money transfers, as well as the choice of

state variables, has not still be fully appreciated and continues to be a source of

confusion in monetary research.

In this note, as we said above, we focus on the money in the utility models.

However, the similar issues appear to be present in the cash-in-advance models as

well. We will demonstrate the issues related with di�erences in:

1. the choice of real wealth as a state variable

2. the timing of trading

3. the timing of markets and the timing of transfers.

4. the e�ect of alternative approaches to the log-linearization.

Ad 1) We will show that an improper choice of a state variable can signi�cantly

change the behavior of model equilibria.1 As an example of this we will document

the choice of real wealth as a state variable as in Walsh (2003).

Ad 2) Here we follow Carlstrom and Fuerst (2001) to show the implications of a

model when the relevant money balances are those held at the beginning of period

rather than those at the end of period, i.e. the �cash-in-advance� money balances

are used instead of the �cash-when-I'm-done� balances as is standard in the most

of the literature. Additionally to the result obtained by Carlstrom and Fuerst
1While the improper choice, which violates elementary assumptions imposed on state variables,

can easily happen during the derivation of a model, it is quite di�cult to implement it when we
solve the model numerically on the computer. For example, both the Uhlig toolbox - due to
its explicit structure of the model equations - or Dynare - where state variables are chosen by
the toolbox - do not allow to solve such an incorrectly speci�ed model. So we demonstrate the
properties of the model with the improper chosen state variables by the use of a general solution
approach like in Blanchard and Kahn (1980) and Klein (2000).
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(2001) that money demand under a proper trading arrangement is related just to

the nominal interest rate, it, rather than to the �interest rate factor�, it/(1 + it).

We also show that the Fisher equation takes more intuitive form and demonstrate

signi�cant quantitative implications of such changed trading on the model impulse

response functions and the second-order moments of model variables. We also

note that without an explicit sequencing of the asset and goods markets, which

is often neglected in the speci�cation of models, will lead to a misspeci�ed money

demand and the Fisher equation. The quantitative implications of such lack of the

speci�cation for the numerical solution are only marginal.

Ad 3) We replicate here and quantify the largely neglected Salyer (1991) result

that not the timing of markets - Lucas (1982) versus Svensson (1985) - but the

timing of money transfers matters in a representative agent framework.

Ad 4) We compare quantitatively di�erent approaches to the log-linearization

of the money in utility model. First, we replicate the results of Walsh (2003)

by using the analytically derived �mixed log-linearization� often used in the New

Keynesian literature [e.g. Gali (2008)], which uses linearization for rate variables

in otherwise log-linearized model. Second, we solve the model by the use of the

analytical version of a fully log-linearized model. And we also use the numerical

log-linearization. We found signi�cant di�erences in the size of the second-order

moments between the mixed log-linearization and the proper log-linearization. The

numerical log-linearization closely followed the results obtained in the properly log-

linearized model.

The Walsh's (2003) book became one of the most used textbooks on the mon-

etary economics. This book is widely used as the support material in the courses

focused on the monetary theory and it provides an overview of the many topics in

monetary policies. Despite the excellent overview provided, some sections of the

book are missing more details in derivations. We believe, that some of the short-
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cuts used in the book can confuse readers by omitting and not clearly de�ning the

assumptions that are crucial for the following derivations.

Walsh (2003) tries to follows derivations in an illustrative form when he speci�es

the utility and production function so he is able to present impulse response func-

tions. Walsh (2003) is also speci�c about the processes for distortion to technology

process and money growth. However, he deviates in formulation of the money in

utility model and its de�nition when searching for solution. Also, we �nd Walsh's

(2003) reasoning for selecting wealth as the state variable misleading.

In the �exible price economy, a shock in the rate of growth of the money stock

does not only changes the in�ation rate. This shock also causes an immediate jump

in the price level at the moment that households become realize that the rate of

money growth has changed. In Walsh's (2003) statement of the problem, he choose

the real wealth in as the state variable. However, when a shock hits this economy

in such way that the current price level changes as a response to the resource re-

allocation then the state variable also changes. But this is inconsistent with the

use of the real wealth as a state variable because induces inconsistency between

the �state� variable value before and after the shock. This error appears in the

following publications Walsh (1998) and Walsh (2003) (page 81).

Our criticism also focuses on the assumption (page 81) that is used to couple

with the problem of the state variable choice and makes the money growth known.

We object against the used of the state variable caries the the information on the

shock realized in the same period. Walsh's (2003) choice of state variable assume

not only knowledge of money growth but also of price level. Though, the price level

is decided in the decision process.

The mentioned inconsistency in the monetary model implies that an impulse

response to shocks may lead to jump responses in the present and the period after

the shock realization. However, this contradicts rational expectation principle that
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allows for jump adjustment only as a response to unexpected shock and in the

period of new information arrival. Therefore, there should be no further jumps in

response.

Therefore, this note should be provide a correct solution to the model presented

in the textbook. We explain the derivation of the model in more details. This note

is organized as follows. First, the model is stated and solved.

2 Literature overview

Sidrauski's (1967b) model of money in the utility function in a neoclassical growth

model is very popular. It is often the �rst monetary model in courses and textbooks

[i.e, Walsh (2003) and Canova (2007)], and often it is the starting point for the

monetary models that feature capital accumulation.

Sidrauski's (1967b) has extended the Ramsey model with the motive for hold-

ing money while with a full set of Arrow-Debreu claims, money is a redundant

asses [Canova (2007)]. The household now has to decide on consuming, holding

money and investing. It is assumed that agents derive utility from holding real

money balances, otherwise money are not needed or their holdings are dominated

by holdings of other assets. However, in this model money is super-neutral (money

growth does not a�ect output growth). So the classical dichotomy holds.

Svensson (1985) proposes a simple extension of the ?) cash-in-advance model.

Svensson's (1985) assumption is that consumers have to choose how much cash to

hold before they observe the actual state of the world, that means that household

is ignoring the current money supply or productivity shock in its decision process.

As a result of this uncertainty/ignorance, household will chose more money to hold

that it needs for purchase of its consumption.

Gali (2008) show the Fischer equation that implies that the nominal interest

rate is responding one for one with the expected in�ation, given that real interest
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rate is determined by the real factors. However, Gali (2008) is not explicit about

the fact that the real is based on the expectations about the real factors. Contrary

to this, Obstfeld and Rogo� (1996) directly states that the Fischer equation is

based on the expected real interest rate.

Obstfeld and Rogo� (1996) describe money in utility model in the context of

the open economy. They assume that Fisher parity equates bond returns regardless

their currency denomination and pay the same real interest rate. They point out,

that after introduction of stochastic factor, the Fischer parity relating future in�a-

tion, actual nominal and real interest rate does not hold. The expected value of

real return on the riskless bond should be used in analog to deterministic Fischer

parity while the bond riskless in the nominal terms is not necessarily riskless in

real terms. They also formulate condition when the stochastic Fischer equation

can be reduced to its certainty equivalent. Further, the alternative motivations for

money introduction are discussed by Obstfeld and Rogo� (1996). They use the

store-of-value function of the money to introduce the model of dollarization. In

this model, penalties for domestic transaction in foreign currency are not su�cient

to discourage its use entirely.

3 The benchmark model

The basic money-in-the-utility function model that we present here is a stochastic

discrete time version of the original deterministic continuous time Sidrauski (1967b)

and Sidrauski (1967a) model.2 Otherwise, we follow the model presented in Walsh

(2003), so the household cares about consumption, leisure and money holdings at

the end of period, i.e. U(c,m′, 1 − n) where c is consumption, m′ is the relevant

money holdings, n is working time, and Uc, Um > 0 and Un < 0. We assume that
2However, in our derivation, we ignore the population growth and we will consider a problem

of representative household. We ignore the population growth while a simple normalization that
uses the size of population transforms the problem in to the per capita version.
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there are two shocks: a technology shock, - which a�ects the productivity of the

production of goods, z, and a monetary shock - which in�uences the growth of the

aggregate monetary supply, u. The representative household, after observing the

aggregate shocks at the beginning of period, decides on the current consumption,

labor, and real money and bond holdings in order to solve the following maximiza-

tion problem:

V (m, b, k, s) = max
c,n,m′,b′,k′

U(c,m′, 1− n) + βEV (m′, b′, k′, s′) (1)

subject to the household budget constraint, where 0 < β < 1 is subjective rate of

discount. In here, the values with prime represent the values at the end of period,

the state of the world in the current period is captured by s = (z, u) with the

technology shock and monetary growth shock given by z, and u, respectively.

The household budget constraint in the real terms is given as follows:

c + k′ +
M ′

P
+

B′

P
= f(z, k, n) + (1− δ)k +

M

P
+

(1 + i)B

P
+ τ (2)

where P is the money price of goods in current period after shock s has been

observed, M ′ are money held by household at the end of the period, B′ are nominal

private bonds held by the household at the end of period. In this formulation it is

assumed that the bonds bought in previous period deliver nominal return, 1 + i,

at the current period so i is the nominal interest rate. The capital depreciates at

rate of δ, and τ is the real value of lump-sum transfers to the household received

before the household decision. These transfers are equal to the aggregate change

in the money supply, so Pτ = M ′ −M , and the money supply of money grows at

the rate θ′, so it follows 1 + θ′ = M ′
M

.

The aggregate output is produced according to the production function y =
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f(z, k, n) with the following form:

y = exp(z)kαn1−α, (3)

where 0 < α < 1 and the total factor productivity process is de�ned as

z′ = ρzz + εz
′ (4)

with the serially uncorrelated productivity shock εz ∼ N(0, σz) and 0 ≤ ρz < 1.

De�ning the real money and bond holdings by M/P ≡ m and B/P ≡ b,

respectively, the budget constraint can be rewritten as follows:

c + k′ + m′ + b′ = f(z, k, n) + (1− δ)k +
m

1 + π
+

(1 + i)b

1 + π
+ τ, (5)

where the in�ation rate, π, is the in�ation rate between the current and past period.

The law of motion for the aggregate real money supply is

m′ =
1 + θ′

1 + π′
m, (6)

where the stochastic growth rate of money supply is θ′ = θ̄ + u′, with the steady

state growth of money θ̄. The disturbance to the growth rate of money u is given

by:

u′ = γuu + γzz + εu
′, (7)

where the serially uncorrelated money growth shock εu ∼ N(0, σ2
u) and the corre-

lation parameters 0 ≤ γz, γu < 1.
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3.1 First order conditions

Taking the derivatives with respect to the control variables in the household prob-

lem above we get the following set of the �rst order conditions:

Uc − λ = 0 (8)

Um′ + βEV ′
m − λ = 0 (9)

Ux − λfn = 0 (10)

βEV ′
b − λ = 0 (11)

βEV ′
k − λ = 0 (12)

Further, the envelope theorem implies the following conditions:

Vk = λ (fk + 1− δ)

Vm = λ
1

1 + π

Vb = λ
1 + i

1 + π

After plugging the envelope conditions into the equations (8)�(12) we obtain

the following �rst order conditions:

Ux

Uc

= fn

Uc = βE [U ′
c (f ′k + 1− δ)]

Uc = βE

[
U ′

c(1 + i′)
1 + π′

]

Um′

Uc

= 1− βE

[
U ′

c

(1 + π′) Uc

]
.

Additionally the last set of the �rst order conditions is given by the transver-
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sality conditions

lim
t→∞

βtUctmt = 0

lim
t→∞

βtUctbt = 0

lim
t→∞

βtUctkt = 0.

Let us denote by Ξ the quadruplet of the state variables, i.e. Ξ ≡ (m, b, k, s),

then the general equilibrium is a set of policy functions (c(Ξ),m′(Ξ), n(Ξ), b′(Ξ), k′(Ξ)),

pricing functions (P (Ξ), i(Ξ)), and the value function V (Ξ) contingent on the the

state of the economy, Ξ.

Using these functions the �rst order conditions can be rewritten as

Ux [c(Ξ),m′(Ξ), 1− n(Ξ)]

Uc [c(Ξ),m′(Ξ), 1− n(Ξ)]
= fn [z, k, n (Ξ)]

Uc [c(Ξ),m′(Ξ), 1− n(Ξ)] = βE{Uc [c(Ξ′),m′(Ξ′), 1− n(Ξ′)]

× (fk [z′, k′ (Ξ) , n (Ξ′)] + 1− δ)}

Uc [c(Ξ),m′(Ξ), 1− n(Ξ)] = βE

{
Uc [c(Ξ′),m′(Ξ′), 1− n(Ξ′)] [1 + i′(Ξ)]

1 + π (Ξ′)

}

(13)
Um′ [c(Ξ),m′(Ξ), 1− n(Ξ)]

Uc [c(Ξ),m′(Ξ), 1− n(Ξ)]
= 1− βE

{
Uc [c(Ξ′),m′(Ξ′), 1− n(Ξ′)]

[1 + π (Ξ′)] Uc [c(Ξ),m′(Ξ), 1− n(Ξ)]

}

(14)

Equation (13) can be further rearranged and the Euler equation takes following

form:

βE

{
Uc [c(Ξ′),m′(Ξ′), 1− n(Ξ′)]

[1 + π (Ξ′)] Uc [c(Ξ),m′(Ξ), 1− n(Ξ)]

}
=

1

1 + i′(Ξ)
(15)

and using equation (14) we get the money demand function depending on the
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interest rate factor, i′(Ξ)
1+i′(Ξ)

, prevailing between the current and next period:

Um′ [c(Ξ),m′(Ξ), 1− n(Ξ)]

Uc [c(Ξ),m′(Ξ), 1− n(Ξ)]
=

i′(Ξ)

1 + i′(Ξ)
. (16)

Using this notation, the �rst order conditions can be rewritten:

Ux(Ξ) = Uc(Ξ)fn(Ξ)

y(Ξ) = f(Ξ)

y(Ξ) = c(Ξ) + k′(Ξ)− (1− δ)k

r(Ξ) = fk(z
′, k, n(Ξ′))− δ

E

{
Uc(Ξ

′)
Uc(Ξ)

r(Ξ′)
}

= 1

E

{
Uc(Ξ

′)
Uc(Ξ)

r(Ξ′)
}

= E

{
Uc(Ξ

′)
Uc(Ξ)

1

1 + π (Ξ′)

}
[1 + i′ (Ξ)] (17)

Um′(Ξ)

Uc(Ξ)
=

i′ (Ξ)

1 + i′ (Ξ)

m′ (Ξ) = m
1 + θ′

1 + π (Ξ)

where the marginal products are as:

fn(Ξ) = (1− α)
y(Ξ)

n(Ξ)
(18)

fk(Ξ) = α
y(Ξ)

k
. (19)

In the equations above we used the fact that the amount of private bonds held

in equilibrium, b = 0. Additionally, if we substitute this fact into the household

budget constraint together with money transfers we get the resource constraint of

the economy y = c + k′ − (1− δ)k.

Notice that equation (17) is a general form of the Fisher equation (or Fisher

parity, as in Obstfeld and Rogo� (1996)) which states that the expected real return
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on capital must be equal to the expected real return on nominal bonds properly

evaluated, as there is no arbitrage on the asset market. Note the odd result which

says that the next period expected real return on nominal bonds is derived from

the current period nominal interest rate rather than from the next period one albeit

the relevant in�ation rate is the next period one.

3.2 Functional form speci�cations

While in this note the model from the Walsh (2003) is followed, an utility function

non-separable in money holdings and consumption is assumed in the following form:

U(c′,m′, 1− n′) =
[ac′1−b + (1− a)m′1−b]

1−Φ
1−b

1− Φ
+ Ψ

(1− n′)1−η

1− η
,

where 0 < a < 1; 0 < b, η, Φ, Ψ; and b, η, Φ 6= 1. It can be shown that for Φ = b = 1

the utility function becomes logarithmic. This form of utility function was for the

�rst time used by Lucas (2000). In here, b is closely related to the inverse of interest

rate elasticity of money demand while the interest rate elasticity of money demand

is given ∂m
∂i

i
m

= −1
b

1
1+m

As in the Walsh (2003), we de�ne

χ(Ξ) = [c(Ξ)]1−b

{
a + (1− a)

[
m′(Ξ)

c(Ξ)

]1−b
}

to simplify the following derivations. So, for the aforementioned speci�cation of

the utility function form follows:

Ux(Ξ) = Ψ [1− n(Ξ)]−η

Uc(Ξ) = a [X(Ξ)]
b−φ
1−φ [c(Ξ)]−b

Um′(Ξ)

Uc(Ξ)
=

(
1− a

a

)[
m′(Ξ)

c(Ξ)

]−b
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(20)

3.3 Steady state

To assess the properties of this model, we consider the economy in the steady state

equilibrium, where we assume that shocks are not present. Therefore, to solve for

the steady state we set εz = εu = 0. Moreover, in the steady state equilibrium

technology is constant (exp(z̄) = 1) and the nominal money grows at the rate θ̄.

For the steady state of transfers, from the law of motion of the real money supply

it follows:

m̄ =
1 + θ̄

1 + π̄
m̄.

While money demand by household implies non-zero holdings of money, it follows

that π̄ = θ̄. So the steady state in�ation is pure monetary phenomena. The steady

state of transfers is given by τ̄ = m̄− m̄/(1 + θ̄) = θ̄m̄/(1 + θ̄).

To solve for the equilibrium, we assume that bond market clears, and b̄ = 0

hence in steady steady For the real side of economy, we assume ȳ = k̄αn̄1−α, the

budget constraint reduces to c̄ = ȳ + δk̄. And from the �rst order condition (11),

for the real rate of return follows that 1 + r̄ = β−1. Therefore the Fisher equation

implies for the nominal interest rate that ī = (1 + θ̄)β−1 − 1.

So the evaluation of the �rst order conditions at steady state gives following

equations:

x̄ = [ac̄1−b + (1− a)m̄1−b] (21)

0 = ac̄−bx̄
b−Φ
1−b − λ̄ (22)

0 =
1

1 + ī
+

1− a

a

(m̄

c̄

)−b

− 1 (23)

0 = −Ψ(1− n̄)−η + λ̄(1− α)
ȳ

n̄
(24)
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0 = β
1 + ī

1 + π̄
− 1 (25)

0 = βαk̄α−1n̄α − δ + 1 (26)

0 = ȳ − c̄− δk̄ (27)

Due to the non-separability of the utility function, we follow Walsh (2003) in

use of the ratios to describe the steady state of the model, therefore we present

derivations of these ratios. These ratios are also used to derive the log-linear ap-

proximation. In these derivations, we use the fact that in the steady state in�ation

equals money growth rate and that for the real return on capital is inverse of house-

hold's discount factor. From production function de�nition y′/k = (n′/k)1−α. From

equation (12) and knowing that fk(z
′, k, n′) = αf(z′, k, n′)/k; and y/k = (n/k)1−α

in steady state, for the output-capital and labor-capital ratio it follows:

ȳ

k̄
=

1

α

(
1

β
− 1 + δ

)
,

n̄

k̄
=

(
1

α

(
1

β
− 1 + δ

)) 1
1−α

.

By use of the equation (24) and aforementioned ratios, the equation for the

steady state of labor supply can be derived as follows:

n̄ =

(
1

Ψ
(1− α)

ȳ

k̄

( n̄

k̄

)−1
)−1

η

.

Further, equation (11) can be rewritten βE[λ′ 1
1+π′ ] = λt

1+i
, substituting this into

the equation (9) and replacing λ with Uc(c
′,m′, 1− n′) as it follows from equation

(8), we get Uc(c
′,m′, 1 − n′) −i

1+i
= −Um(c′,m′, 1 − n′). Substituting the functional

forms, dividing by x′ and rearranging, it follows for the money-consumption ratio
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in the steady state:

ī

1 + ī
=

1− a

a

(m̄

c̄

)−b

. (28)

When evaluated at steady state and nominal interest rate is plugged in, the equation

(28) implies:

m̄

c̄
=

(
(1 + θ)(1 + β−1)− 1

(1 + θ)(1 + β−1)

)− 1
b
(

a

1− a

)− 1
b

. (29)

The budget constraint evaluated at steady state gives ȳ/k̄ = c̄/k̄ − δ. Plugging for

consumption-capital ratio into the steady state money-consumption ratio, gives the

following formula for money-capital ratio:

m̄

k̄
=

(
(1 + θ)(1 + β−1)− 1

(1 + θ)(1 + β−1)

)− 1
b
(

a

1− a

)− 1
b c̄

k̄
. (30)

3.4 Calibration

To replicate the results of model by Walsh (2003) and to create a benchmark model,

we use the following structural parameters for all the analyzed models:

α β γu γz δ η Φ θ ρ σu σz a b

0.36 0.989 0.5 0.0 0.019 1 2 0.0125 0.95 0.007 0.0089 0.95 2.56

Table 1: Baseline Parameters Values

Further, in the log-linearized models the setting of weight of leisure in the

utility Ψ can be replaced by setting the steady state fraction of time devoted to

work. In here, the steady state value of employment n is set to 1/3. For the model

of numerical approximation the Ψ is set to 1.447 that leads to steady state value

of labor n = 0.3333.

The linearized solutions rely on the ratios of variables, these ratios are reported

in the table (2). The values presented coincides with values reported by Walsh
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(2003) in the Table 2.3.

ȳ
k̄

n̄
k̄

m̄
c̄

m̄
k̄

c̄
k̄

0.0837 0.0207 1.3762 0.0890 0.0647

Table 2: Steady state ratios

3.5 Simulation results

In this section we compare quantitatively di�erent approaches to the log-linearization

of the money in utility model. First, we replicate the results of Walsh (2003) by us-

ing the analytically derived �mixed log-linearization� used often in the literature.3

This approach, often used in the New Keynesian literature (see Gali), uses lin-

earization for rate variables in otherwise log-linearized model. Second, we solve the

model by the use of the analytical version of a fully log-linearized model. And we

also use the numerical log-linearization of the model by using the Dynare toolbox

developed by Juillard (1996). We solve these three versions of the model and com-

pare their impulse response functions to monetary shock and we also the di�erences

between the implied second-order moments.

Because we also solved model by method presented Juillard (1996), we are able

to obtain the steady state values of the endogenous variables.

c̄ k̄ λ̄ m̄ n̄ ī π̄ r̄ ȳ

1.0399 16.0798 0.8401 1.4311 0.3333 0.0238 0.0125 0.0111 1.3454

Table 3: Steady state values

In here, we also compare the di�erences that occur when relative deviations

for all variables are computed with the approach where in�ation and interest rates

approximations are just percentage deviations. The derivation of log-linearized

version of the model that uses relative approximations for all variables is presented
3The Matlab code for such model is available on the web as a supplement to the book. This

code uses the method described by Uhlig (1995) to solve the model.
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in the Appendix (A). The presented numerical approximation in here is also based

on relative deviations for all variables.

Table (4) compares the standard deviations of the models. As can be seen the

model presented by Walsh (2003) (denoted as Original) delivers low volatility of

money holdings and in�ation in comparison with the results obtained by numerical

approximation (denoted as Numerical). Also, it delivers much higher volatility

of nominal interest rate than the other presented models. As the reason for this

di�erence, the typo in money demand equation is identi�ed, so the original code is

corrected (denoted Typo).

Further, we log-linearize the model using the presented �rst order conditions

(Replication) and the results coincides with those obtained by corrected model.

Finally, the log-linearized model (Relative) where all variables are computed as

relative deviations from their steady states. The derivation of the relative approxi-

mation is presented in the Appendix A. The version with relative approximation of

all variables reveals lower values for in�ation, nominal and real interest rate. How-

ever, the pattern of steady state returns is in accordance with numerical solution

Original Typo correct. Replication Relative Numerical
Capital 0.270 0.270 0.270 0.273 0.273
Money holdings 0.262 0.744 0.736 1.027 0.736
Output 1.088 1.087 1.088 1.088 1.090
Consumption 0.234 0.235 0.235 0.234 0.235
Employment 0.315 0.314 0.315 0.313 0.315
Nominal rate 0.334 0.044 0.044 0.024 0.043
Real rate 0.030 0.030 0.034 0.027 0.030
In�ation 0.899 1.407 1.407 1.260 1.390
Investment 4.039 4.037 4.038 4.043 4.045

Table 4: Standard deviations

The di�erences in the standard deviations originates from the from the change of

the impulse response function to monetary shock. The following �gures shows the

impulse response of the in�ation and nominal interest rate in these models. Figures

(1) and (2) show the response of the original model (blue dashed line), corrected
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model ( green dash-dotted line), relative ( black dotted line) and numerical solution

(red solid line). In here, we omit response from model replication while it coincides

with the model after correction. The results presented in Figure (1) show that up

to the �rst period, the responses of in�ation are signi�cantly muted.
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Figure 1: In�ation response to money growth shock

The increase in the money supply can have two e�ects. First, it can reduce

the real interest rate while more liquidity leads excess supply of money, therefore

pressures for lower price of money occur which is equivalent to lowering the interest

rate, this is called the �liquidity e�ect�. Second, the foreseen higher future in�ation

leads via the Fischer equation to increase in the nominal interest rate, this is called

Fisher e�ect.

Therefore to generate a decrease of the nominal interest rate in response to
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a increase in a supply of money, it is required that the liquidity e�ect outweighs

the Fisher e�ect. However, in in the presented model money does not in�uence

real variables such as the real interest rate. It only in�uences in�ation, therefore

increases in the money supply leads to higher in�ation and so the nominal interest

rate rises as there is only a Fisher e�ect.
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Figure 2: Nominal interest rate response to money growth shock

The results presented in the Figure (2) show that the response of nominal in-

terest rate is signi�cantly muted in comparison with the original model. Therefore,

it signals that the reports reported in Walsh (2003) overvalue the Fischer e�ect.

In the following chapter, we show how to generate some liquidity e�ect (lower

nominal interest rates for higher money supply) by introduction of explicit timing

constraints.
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Finally, to complete our comparison with the original model as in Walsh (2003),

we show the correlations of variables with the output. The results of calculations

are summarized in the correlation table. The results shown in Table (5) reveal

Original Typo correct. Replication Relative Numerical
Capital 0.27 0.27 0.27 0.27 0.27
Money holdings 0.82 0.82 0.25 0.25 0.25
Output 1.00 1.00 1.00 1.00 1.00
Consumption 0.95 0.95 0.95 0.95 0.95
Employment 0.89 0.89 0.89 0.89 0.89
Nominal rate 0.06 0.06 0.05 0.05 0.05
Real rate 0.97 0.97 0.96 0.96 0.96
In�ation -0.09 -0.09 -0.06 -0.06 -0.06
Investment 1.00 1.00 1.00 1.00 1.00

Table 5: Correlation with output

that the correction in the amplitude of in�ation does still delivers high money

and output correlation in comparison with rest of the models. The rest of the

correlation parameters is consistent across the model derivation, linearization and

solution techniques.

4 Real Wealth as a State

In the previous section, we solved the model by setting money balances and capital

as the state variables. However, Walsh (2003) states in the section 2.7.1 that the

state of the system can be summarized by the real �nancial wealth. To solve the

model we have to rede�ne the optimization problem. Household solves the following

problem:

V (a, k, s) = max
c,n,k′,m′,b′

U(c,m′, 1− n) + βEV (a′, k′, s′), (31)
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where maximization is over (c, n, k′,m′, b′) and subject to the modi�ed budget

constraint:

y +
M

P
+

(1 + i)B

P
+ τ = c + k′ − (1− δ)k +

M ′

P
+

B′

P
.

In here, the real �nancial wealth of household is ω′ = M ′
P ′ + (1+i′)B′

P ′ + τ ′, transfers τ

are received at the beginning of the period, and s is a set of shocks that includes

monetary and technology shock.

The modi�cation follows by de�ning the real money balances as m′ ≡ M ′/P

and real bond holdings b′ ≡ B′/P. Using these two de�nitions, we can state the

real budget constraint as follows:

y′ + (1− δ)k + ω = c′ + k′ + m′ + b′ (32)

ω′ =
m′

1 + π′
+

(1 + i′)b′

1 + π′
+ τ ′. (33)

Di�erentiating with respect to c, n, k′,m′, and b′ the �rst order necessary conditions

can be stated as follows:

0 = Uc(c,m
′, 1− n)− λ

0 = Un(c,m′, 1− n)− λfn(k, n)

0 = βEVk(a
′, k′, s′)′ − λ

0 = βE

[
V ′

a(a
′, k′, s′)

1 + π′

]
− λ

0 = Um′(c,m′, 1− n) + βE

[
V ′

a(a
′, k′, s′)(1 + i′)

1 + π′

]
− λ (34)

The envelope theorem gives following two equations:

Vω(ω′, k′, s′) = λ
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Vk(ω
′, k′, s′) = λ (fk(k, n) + 1− δ) .

Plugging these two equations into the system of equations (34), the necessary con-

ditions are transformed to the following system:

Un(c,m′, 1− n)

Uc(c,m′, 1− n)
= λfn(k, n)

Uc(c,m
′, 1− n) = βE [U ′

c(c,m
′, 1− n) (f ′k(k, n) + 1− δ)]

Um′(c,m′, 1− n)

Uc(c,m′, 1− n)
= 1− βE

[
U ′

c(c,m
′, 1− n)

(1 + π′) Uc(c,m′, 1− n)

]

Uc(c,m
′, 1− n) = βE

[
U ′

c(c,m
′, 1− n)(1 + i′)
1 + π′

]

Further, the �rst order conditions are completed with the resource constraint:

k′ = zf(k, n) + (1− δ)k − c,

the description of the evolution of the aggregate money supply in real terms:

m′ =
1 + u

1 + π
m,

and the productivity and money growth shock processes:

z′ = ρzz + εz
′

u′ = γuu + γzz + εu
′,

where the same restriction for parameters ρz, γu and γz as in the previous apply.

In this model, we would like to be very speci�c about the timing of the variables.

Therefore, to stress the timing we rewrite �rst order conditions in terms of variables

as functions contingent on the state of the economy:
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Un [c(ω, k, s),m′(ω, k, s), 1− n(ω, k, s)]

Uc [c(ω, k, s),m′(ω, k, s), 1− n(ω, k, s)]
= fn (k, n)

Uc [c(ω, k, s),m′(ω, k, s), 1− n(ω, k, s)] =

βE[Uc [c(ω′, k′, s′),m′(ω′, k′, s′), 1− n(ω′, k′, s′)]× (fk (k′, n′) + 1− δ)]

Um′ [c(ω, k, s),m′(ω, k, s), n(ω, k, s)]

Uc [c(ω, k, s),m′(ω, k, s), 1− n(ω, k, s)]
=

1− βE

[
Uc [c(ω′, k′, s′),m′(ω′, k′, s′), 1− n(ω′, k′, s′)]

[1 + π (ω′, k′, s′)] Uc [c(ω, k, s),m′(ω, k, s), 1− n(ω, k, s)]

]

Uc [c(ω, k, s),m′(ω, k, s), 1− n(ω, k, s)] =

βE

[
Uc [c(ω′, k′, s′),m′(ω′, k′, s′), 1− n(ω′, k′, s′)] [1 + i′(ω, k, s)]

1 + π (ω′, k′, s′)

]
.

(35)

5 Alternative timing: CWID versus CIA

In this section, we analyze the implications of di�erent timing of money balances

relevant for the utility function in these models.

The most common setup of money timing used in monetary model is the one

labeled by Carlstrom and Fuerst (2001) with label �cash-when-I'm-done� (CWID).

This timing assumes that money that delivers utility are those at the end of the

period. This means money that held after receiving transfers, selling bonds, and

purchasing consumption.

In this model of timing there are segregated good and �nancial markets. How-

ever, households still consist of a worker-shopper pair. The typical period can

be described by the following steps. At �rst, household collects information on

shocks and the prices. Then asset markets are opened, household receives payo�

from its portfolio chosen in the previous period and receives transfers/tax from

the monetary authority. Households decides on a new portfolio and asset market

closes. Further, good market opens. Worker part of household goes to the market

23



to sell their own product; shopping part goes to the market to buy consumption

good with money. After, the good market is closed household consumes and enjoy

money held.

Nevertheless, as Carlstrom and Fuerst (2001) point out, it is very di�cult to

justify CWID timing on logical grounds. As the CWID supposes that consumption

expenditures are restricted, not by the money held as the consumer enters markets,

but instead by the money held after consumers leaves the goods market, and after

even more transactions in the asset market. Following Carlstrom and Fuerst (2001)

in the next Section, we will assume a more natural speci�cation of preferences,

where money services are derived from the money holding before the transactions

happens rather than after them. This set up is consistent with the so-called cash-

in-advance timing.

5.1 CIA Timing of Used Money Balances

With CWID timing current income is included as part of current money balances.

As Carlstrom and Fuerst (2001) state this violates Clower's (1967) dictum that

�money buys goods, and goods buy money but goods do not buy goods�.

An obvious candidate for an alternative timing that is immune to this critique is

�cash-in-advance�(CIA) timing. Under this timing money accumulated in previous

periods are used in the current period transactions [e.g. Clower (1967), Lucas

(1980), and Svensson (1985)].

The budget constraint is unchanged and is as follows:

c + k′ + m′ + b′ = zf(k, n) + (1− δ)k +
m

1 + π
+

(1 + i)b

1 + π
+ τ, (36)

but the relevant money balances are those after the trades in asset market are
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settled. Therefore, we de�ne a new variable d as follows

d =
m

1 + π
− b′ +

(1 + i)b

1 + π
, (37)

where d are the money holdings that deliver the utility to household. As in the

previous section, the money balances, capital and bond holdings are chosen to be

the state variable. With these state variables, the household maximization problem

can be stated as follows:

V (m, b, k, s) = max
c,d,n,k′,m′,b′

U(c, d, 1− n) + βEV (m′, b′, k′, s′) (38)

subject to the budget constraint (36) and the equation for money balances (37).

As in the solution of the standard money in utility model, the �rst order neces-

sary conditions with respect to control variables c, d, n, k′, b′ and m′ can be stated

as follows:

Uc − λ = 0

Ud − µ = 0

Ux − λzfn = 0

βEV ′
k − λ = 0

βEV ′
b − λ− µ = 0

βEV ′
m − λ = 0.

The envelope theorem for the state variables k, m and b gives following three equa-

tions:

Vk = λ (zfk + 1− δ)

Vm = (λ + µ)
1

1 + π
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Vb = (λ + µ)
1 + i

1 + π
. (39)

By plugging the equations (39) into the equations (39), the �rst order conditions

can be rewritten as follows:

Ux

Uc

= zfn

Uc = βE [U ′
c (f ′k + 1− δ)]

Uc + Ud = βE

[
(U ′

c + U ′
d) (1 + i′)

1 + π′

]

Uc = βE

[
U ′

c + U ′
d

1 + π′

]
. (40)

The model is closed with the following resource constraint:

k′ = zf(k, n) + (1− δ)k − c,

the evolution of the aggregate money supply in real terms as given by the equation

(6), and two shock processes given as in the standard model by equations (7) and

(4).

Again, we would like to be more speci�c about timing of variables in the equa-

tions (40), therefore we express the �rst order conditions using the variables explic-

itly declared as functions contingent on the state of the economy:

Ux [c(Ξ), d(Ξ), 1− n(Ξ)]

Uc [c(Ξ), d(Ξ), 1− n(Ξ)]
=zfn [k, n (Ξ)]

Uc [c(Ξ), d(Ξ), 1− n(Ξ)] =βE{Uc [c(Ξ′), d(Ξ′), 1− n(Ξ′)]

× (z′fk [k′ (Ξ) , n (Ξ′)] + 1− δ)}
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βE

{
[Uc [c(Ξ′), d(Ξ′), 1− n(Ξ′)] + Um̂ [c(Ξ′), d(Ξ′), 1− n(Ξ′)]] [1 + i′(Ξ)]

[Uc [c(Ξ), d(Ξ), 1− n(Ξ)] + Um̂ [c(Ξ), d(Ξ), 1− n(Ξ)]] [1 + π (Ξ′)]

}

= 1 (41)

βE

{
Uc [c(Ξ′), d(Ξ′), 1− n(Ξ′)] + Um̂ [c(Ξ′), d(Ξ′), 1− n(Ξ′)]

Uc [c(Ξ), d(Ξ), 1− n(Ξ)] [1 + π (Ξ′)]

}

= 1 (42)

where as in the derivation of the standard model Ξ is the consolidated the vector

of states, i.e. Ξ ≡ (m, b, k, s). In here, it can be seen that due to CIA constraint,

households must carry on money one period in advance to deliver utility, as the

intertemporal constraint changes in comparison with the Euler equation (15).

Equation (41) can be further expressed as

βE

{
[Uc [c(Ξ′), d(Ξ′), 1− n(Ξ′)] + Um̂ [c(Ξ′), d(Ξ′), 1− n(Ξ′)]]

Uc [c(Ξ), d(Ξ), 1− n(Ξ)] [1 + π (Ξ′)]

}
[1 + i′(Ξ)]

= 1 +
Um̂ [c(Ξ), d(Ξ), 1− n(Ξ)]

Uc [c(Ξ), d(Ξ), 1− n(Ξ)]

and so if we divide it by (42) we get

Um̂ [c(Ξ), d(Ξ), 1− n(Ξ)]

Uc [c(Ξ), d(Ξ), 1− n(Ξ)]
= i′(Ξ)

which is the money demand function depending on the interest rate, i′(Ξ), prevailing

between the current and next period. The detailed derivation of the model using the

functional forms for the production function and the utility function are provided

in the Appendix (B).

5.2 Simpli�ed CIA Timing of Used Money Balances

In this section, we analyze the e�ect of another kind of simpli�cations which often

appears in the literature. It is the situation when the trade in nominal bonds

is explicitly introduced in the model economy, however, the trade structure - the
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trades on the asset and goods markets - is neglected. While this neglect has no

e�ect on the results in the model with CWID timing it has an important e�ect in

the model with CIA timing.4

As in the previous section, household solves the following maximization problem

V (m, b, k, s) = max
c,d,n,m′,b′,k′

U(c, d, 1− n) + βEV (m′, b′, k′, s′)

subject to the standard budget constraint as given by equation (36). However, in

this model the money that deliver utility are given by the following equation:

d =
m

1 + π
.

Similarly, as in the previous cases the �rst order condition are derived with

respect to control variables c, d, n, k′,m′, and b′ as follows:

Uc − λ = 0

Ud − µ = 0

Ux − λzfn = 0

βEV ′
k − λ = 0

βEV ′
m − λ = 0

βEV ′
b − λ = 0

and the envelope theorem implies following equations:

Vk = λ (zfk + 1− δ)

4The same problem it creates in the models with money introduced via the cash-in-advance
model.
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Vm = λ
1

1 + π
+ µ

1

1 + π

Vb = λ
1 + i

1 + π
.

Using these equations the �rst order conditions can rewritten as follows:

Ux

Uc

= zfn

Uc = βE [U ′
c (f ′k + 1− δ)]

Uc = βE

[
U ′

c(1 + i′)
1 + π′

]

Uc = βE

[
U ′

c + U ′
d

1 + π′

]

As in the previous section, the model is closed with the following resource con-

straint, the evolution of the aggregate money supply (6), and two shock processes

given as in the standard model by equations (7) and (4). We also rewrite the

necessary conditions as functions contingent on the state of the economy Ξ :

Ux [c(Ξ), d(Ξ), 1− n(Ξ)]

Uc [c(Ξ), d(Ξ), 1− n(Ξ)]
= zfn [k, n (Ξ)]

Uc [c(Ξ), d(Ξ), 1− n(Ξ)] = βE{Uc [c(Ξ′), d(Ξ′), 1− n(Ξ′)]

× (z′fk [k′ (Ξ) , n (Ξ′)] + 1− δ)}

βE

{
Uc [c(Ξ′), d(Ξ′), 1− n(Ξ′)] [1 + i′(Ξ)]

Uc [c(Ξ), d(Ξ), 1− n(Ξ)] [1 + π (Ξ′)]

}
= 1 (43)

βE

{
Uc [c(Ξ′), d(Ξ′), 1− n(Ξ′)]

Uc [c(Ξ), d(Ξ), 1− n(Ξ)] [1 + π (Ξ′)]

}
= 1 +

+
Ud [c(Ξ), d(Ξ), 1− n(Ξ)]

Uc [c(Ξ), d(Ξ), 1− n(Ξ)]
(44)

where by Ξ we noted the vector of states, i.e. Ξ ≡ (m, b, k, s). Equation (43) can
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be further expressed as follows:

βE

{
Uc [c(Ξ′), d(Ξ′), 1− n(Ξ′)]

Uc [c(Ξ), d(Ξ), 1− n(Ξ)] [1 + π (Ξ′)]

}
[1 + i′(Ξ)] = 1.

The equation (45) can be further modi�ed by use of equation (44), and following

equations is derived:

E
{

Uc[c(Ξ′),d(Ξ′),1−n(Ξ′)]
1+π(Ξ′)

[
1 + Ud[c(Ξ′),d(Ξ′),1−n(Ξ′)]

Uc[c(Ξ′),m(Ξ′),1−n(Ξ′)]

]}

E
{

Uc[c(Ξ′),d(Ξ′),1−n(Ξ′)]
1+π(Ξ′)

} = 1 + i′(Ξ).

Dividing by the E
{

Uc[c(Ξ′),d(Ξ′),1−n(Ξ′)]
1+π(Ξ′)

}
, we get the money demand function in the

following form:

E

{
Ud [c(Ξ′), d(Ξ′), 1− n(Ξ′)]
Uc [c(Ξ′), d(Ξ′), 1− n(Ξ′)]

}
= i′(Ξ), (45)

for more detailed derivation of the equation (45) see the details in Appendix E.

Further, for a detailed solution of the model of the simpli�ed cash-in-advance timing

see the details in Appendix (D). The equation (45) relates the expected next period

marginal utility from money holding to marginal utility of consumption. So, the

MRS between money and consumption depends on the current period nominal

interest rate, i′(Ξ).

5.3 Simulation results

As for the standard money in utility model presented in the previous section, we

solve model of cash-in-advance timing of utility and its simpli�ed version by log-

linearization. The detailed log-linearization of these two models is presented in

Appendices C and F, respectively.

Also, as in the section on standard money in utility model, we focus our atten-
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tion to standard deviations of the series generated by models and impulse response

functions.

In here, we again presents results for the benchmark model but with the di�erent

parametrization. While the original parametrization delivers non-intuitive impulse

response of the model. Therefore, we set b = 2. In the following tables, for the CIA

and SCIA, we report the statistics of the money balances d that are relevant to

utility function.

Benchmark Re-calibration CIA SCIA
Capital 0.270 0.270 0.270 0.270
Money balances 0.736 0.758 0.567 0.567
Output 1.088 1.087 1.088 1.088
Consumption 0.235 0.235 0.235 0.235
Employment 0.315 0.314 0.316 0.316
Nominal rate 0.044 0.035 1.078 0.539
Real rate 0.034 0.034 0.034 0.034
In�ation 1.407 1.426 0.695 0.695
Investment 4.038 4.034 4.040 4.040

Table 6: Standard deviations

Table (6) present the results of standard deviations calculations. In this table,

we also present the comparison of benchmark model with the re-calibrated model

to asses the changes implied by change of the utility function parameter b. The re-

calibrated model delivers slightly higher values for money balances and in�ation as

the elasticity of money demand is increased. At the same time, nominal exchange

rate volatility decreases while smaller changes in interest rate are needed to adjust

for change in money demand.

The CIA and SCIA timing present a restriction on the money holdings, therefore

the observed volatility of money holdings is much lower then in the benchmark

model. Due to this restriction, interest rate volatility is increasing to compensate

for the restriction on money holdings �exibility.

In the Figures (3) and (4), we present impulse response function of the bench-

mark (blue dashed line); re-calibrated (green dash-dotted line); CIA timing (black
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Figure 3: In�ation response to money growth shock

dashed line); and SCIA timing (red solid line) model. Figure (3) shows that the re-

calibration does not signi�cantly change the response of in�ation. The introduction

of CIA timing changes in�ation response signi�cantly.

Benchmark Re-calibration CIA SCIA
Capital 0.27 0.27 0.27 0.27
Money balances 0.27 0.27 0.37 0.37
Output 1.00 1.00 1.00 1.00
Consumption 0.95 0.95 0.95 0.95
Employment 0.89 0.89 0.89 0.89
Nominal rate 0.03 0.03 0.02 0.03
Real rate 0.97 0.97 0.97 0.97
In�ation -0.06 -0.06 -0.11 -0.11
Investment 1.00 1.00 1.00 1.00

Table 7: Correlation with output
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Figure 4: Nominal interest rate response to money growth shock
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Table (7) present the comparison of variables correlation of variables with out-

put in the examined models. As it can be seen, the change of inverse of the interest

elasticity of real money demand does not signi�cantly a�ects the results. How-

ever, the introduction of cash-in-advance restriction induces signi�cant changes. In

money in the utility models nominal interest rate does not show a signi�cant rela-

tion with output. This is because increases in the nominal interest rate are driven

by the Fisher e�ect that dominates the liquidity e�ect. The introduction of the

CIA timing and the SCIA modi�cation drives the change in the nominal interest

rate-output correlation.

As the Table (7) shows the most signi�cant change in correlation occurs for

in�ation-output. Figures (3) and (4) shows under the CIA timing, households

rise their expectations of in�ation, the nominal interest rate rises accordingly. The

response of nominal interest rate is much larger than in the benchmark model, thus

the liquidity e�ect is suppressed relatively to Fischer e�ect. This is also con�rmed

by the more negative value of nominal interest rate-output correlation then under

the benchmark model. However, under the SCIA modi�cation as Figure (4) shows

lower deviation of nominal interest rate than under the CIA timing. This indicates

that the importance of the liquidity e�ect is increased in SCIA timing.

Re-calibration CIA SCIA
Capital -0.02 -0.02 -0.02
Money balances 0.15 0.24 0.24
Output 0.71 0.71 0.71
Consumption 0.61 0.61 0.61
Employment 0.73 0.73 0.73
Nominal rate 0.04 0.01 0.03
Real rate 0.74 0.74 0.74
In�ation -0.05 -0.09 -0.09
Investment 0.72 0.72 0.72

Table 8: Correlation with lagged output
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Table (8) shows correlations of variables lagged by one period with the cur-

rent period output. Comparing the CIA and SCIA timing modi�cation with the

standard money in the utility model (Re-calibration) reveals that a in�ation more

correlated with output than it is in the re-calibrated model.

6 Conclusion

The model introduced by Sidrauski (1967b) introduces demand for money based on

the utility delivered by holding the money as form of asset. The goal of this note

was to present the e�ects of choice of the state variables when solving the money

in utility model. We also provide a detailed derivation of the handbook model by

Walsh (2003).

We also show, how to modify the �rst order conditions of the money in utility

in order to describe the e�ects of the choice of the real wealth of household as the

state variable.

Inspired by the lack of explicit timing speci�cations in the recent literature

for the money that deliver utility to household, we show how the various timing

assumptions a�ect the size of the liquidity and Fischer e�ect. We show that the

most signi�cant change occurs when the cash held before the shopping is used to

deliver utility. Our results show that cash-in-advance constraints lead to decrease

in volatilities of money holdings and in�ation.

Further, by setting-up and solving various versions of the money in utility model,

we performed analysis of implications of various assumptions. Also, we demonstrate

the e�ects of approximations methods choice. We also explained the deviations

from the reference literature.
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A CWID-timing model: Log-linearization
In this appendix, we present solution of the model by log-linearization, where all
variables are expressed as the relative deviations from the steady state. Rearranging
the �rst order conditions and laws of motions, we get the following set of thirteen
equations:

x′ = [ac′1−b
+ (1− a)m′1−b

], (46)
λ′ = ac′−b

x′
b−Φ
1−b , (47)

i′

1 + i′
=

1− a

a

(
m′

c′

)−b

, (48)

Ψ(1− n′)−η = λ′(1− α)
y′

n′
, (49)

λ′ = βE ′[λt+1(1 + r′)], (50)

E ′[λ′
1 + i

1 + π′
] = E ′[λt+1(1 + r′)], (51)

r′ = exp(z′)αkα−1n′1−α − δ, (52)
y′ = c′ + k′ − (1− δ)k, (53)
y′ = exp(z′)kαn′1−α

, (54)
z′ = ρzz + εz

′, (55)

m′ =
1 + θ′

1 + π′
mt−1, (56)

θ′ = θ̄ + u′, (57)
u′ = γuu + γzz + εu

′, (58)

To solve the model, the log-linearization of the model around its the steady state is
needed. Model will be formulated in the logarithmic deviations around the steady
state. To do this, a new variable is introduced in the the following form:

χ̃′ = log(χ′)− log(χ̄),

where χ is the steady state value of the variable χ = {c,m, n, k, x, λ, i, π, r, y, zm,
θ, u}. For equation (46), this transformation implies:

x̃′ =
ac̄1−b(1− b)

x̄
c̃′ +

(1− a)m̄1−b(1− b)

x̄
m̃′,

where x̄ = ac̄1−b + (1 − a)m̄1−b. The x̃′ can be expressed in form that uses the
steady state money�consumption ratio, by dividing c̄1−b :

x̃′ =
a

a + (1− a)( m̄
c̄
)1−b

(1− b)c̃′ +
(1− a)( m̄

c̄
)1−b

a + (1− a)( m̄
c̄
)1−b

(1− b)m̃′.
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For the equation (47) it follows:

λ̃′ = −bc̃′ +
b− Φ

1− b
x̃′.

The equation (48) is known as the money demand equation, by use of log-linearization
following equation is derived

1

1 + ī
ĩ′ = −bm̃′ + bc̃′.

For labor supply equation (49), by use of log-linearization following equation is
derived

1 + n̄(η − 1)

1− n̄
ñ′ = λ̃′ + ỹ′.

Log-linearization of the Langrange multiplier�real rate relation (50) and Fischer
equation (51) gives:

λ̃′ = λ̃t+1 +
r̄

1 + r̄
r̃′,

ī ĩ =
1

r̄ + π̄ + r̄π̄
(π̄π̃′ + r̄r̃′ + π̄r̄(π̃′ + r̃′)).

For the rate of return on capital given by equation (52) it follows:

r̄

r̄ + δ
r̃′ = z̃′ + (α− 1)k̃ + (1− α)ñ′.

The log-linearization of the budget constraint and production function given by
equations (53) and (54), gives:

ỹ′ =
c̄

ȳ
c̃′ +

k̄

ȳ
k̃′ − k̄

ȳ
(1− δ)k, (59)

ỹ′ = z̃′ + αk̃ + (1− α)ñ′.

While the equations (55) and (58) for technological process shock and monetary
growth shock are already in linear form of deviations from the steady, it is straight-
forward to rewrite them in log-linear form:

z̃′ = ρz z̃ + εz
′,

m̃′ =
θ̄

1 + θ̄
θ̃′ − θ̄

1 + θ̄
π̃′ + m̃,

θ̃′ =
1

θ̄
ũ′,

ũ′ = γuũ + γz z̃ + εu
′.
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B CIA timing model: derivation of FOCs

Ux(Ξ) = Uc(Ξ)ezfn(Ξ)

y(Ξ) = ezf(Ξ)

y(Ξ) = c(Ξ) + k′(Ξ)− (1− δ)k

re(Ξ) = E
{

ez′fk(k, n(Ξ′))− δ
}

E

{
Uc(Ξ

′)
Uc(Ξ)

r(Ξ′)
}

= 1

E

{
Uc(Ξ

′)
Uc(Ξ)

r(Ξ′)
}

= E

{
[Uc(Ξ

′) + Ud(Ξ
′)]

[Uc(Ξ) + Ud(Ξ)]

1

1 + π (Ξ′)

}
[1 + i′ (Ξ)]

Ud(Ξ)

Uc(Ξ)
= i′ (Ξ)

d (Ξ) =
m

1 + π (Ξ)

m′ (Ξ) = m
1 + eu

1 + π (Ξ)

Derivation of the Fisher equation

Uc(Ξ) + Ud(Ξ) = βE

{
Uc(Ξ

′) + Ud(Ξ
′)

1 + π (Ξ′)

}
[1 + i′ (Ξ)]

Uc(Ξ)

[
1 +

Ud(Ξ)

Uc(Ξ)

]
= βE





Uc(Ξ
′)

[
1 + Ud(Ξ′)

Uc(Ξ′)

]

1 + π (Ξ′)



 [1 + i′ (Ξ)]

Uc(Ξ)

[
1 +

Ud(Ξ)

Uc(Ξ)

]
= Uc(Ξ) [1 + i′ (Ξ)]

Uc(Ξ) [1 + i′ (Ξ)] = βE

{
Uc(Ξ

′) [1 + i′ (Ξ′)]
1 + π (Ξ′)

}
[1 + i′ (Ξ)]

Uc(Ξ) = βE

{
Uc(Ξ

′) [1 + i′ (Ξ′)]
1 + π (Ξ′)

}

E

{
Uc(Ξ

′)
Uc(Ξ)

r(Ξ′)
}

= E

{
Uc(Ξ

′)
Uc(Ξ)

1 + i′ (Ξ′)
1 + π (Ξ′)

}

where

Ux(Ξ) = Ψ [1− n(Ξ)]−η

Uc(Ξ) = a [X(Ξ)]
b−φ
1−φ [c(Ξ)]−b

X(Ξ) = [c(Ξ)]1−b

{
a + (1− a)

[
d(Ξ)

c(Ξ)

]1−b
}
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Ud(Ξ)

Uc(Ξ)
=

(
1− a

a

)[
d(Ξ)

c(Ξ)

]−b

ezfn(Ξ) = (1− α)
y(Ξ)

n(Ξ)

ezfk(Ξ) = α
y(Ξ)

k
.

C CIA-timing model: Log-linearization

λ̃t = Ũc,t = Ω1c̃t + Ω2d̃t(
1 + η

n̄

1− n̄

)
ñt = ỹt + λ̃t

ỹt = αk̃t−1 + (1− α)ñt + z̃t( ȳ

k̄

)
ỹt =

( c̄

k̄

)
c̃t + k̃t − (1− δ)k̃t−1

r̂t = α
( ȳ

k̄

) [
ỹt − k̃t−1

]

Et

[
λ̃t+1 − λ̃t + r̂t+1

]
= 0

Π̄Etr̂t+1 = Etı̂t+1 − R̄Etπ̂t+1

d̃t − c̃t = − 1

bĪ
ı̂t

d̃t = m̃t−1 − 1

Π̄
π̂t

m̃t = m̃t−1 +
1

1 + Ξ̄
ût − 1

Π̄
π̂t

D Simpli�ed CIA-timing model: Derivation of FOCs

Ux(Ξ) = Uc(Ξ)ezfn(Ξ)

y(Ξ) = ezf(Ξ)

y(Ξ) = c(Ξ) + k′(Ξ)− (1− δ)k

re(Ξ) = E
{

ez′fk(k, n(Ξ′))− δ
}

E

{
Uc(Ξ

′)
Uc(Ξ)

r(Ξ′)
}

= 1

E

{
Uc(Ξ

′)
Uc(Ξ)

r(Ξ′)
}

= E

{
Uc(Ξ

′)
Uc(Ξ)

1

1 + π (Ξ′)

}
[1 + i′ (Ξ)]

E

{
Ud(Ξ

′)
Uc(Ξ′)

}
= i′ (Ξ)
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m′ (Ξ) = m
1 + eu

1 + π (Ξ)

d (Ξ) =
m

1 + π (Ξ)

Derivation of the Fisher equation

E

{
Uc(Ξ

′)
Uc(Ξ)

r(Ξ′)
}

= E

{
Uc(Ξ

′)
Uc(Ξ)

1

1 + π (Ξ′)

}
[1 + i′ (Ξ)]

where

Ux(Ξ) = Ψ [1− n(Ξ)]−η

Uc(Ξ) = a [X(Ξ)]
b−φ
1−φ [c(Ξ)]−b

X(Ξ) = [c(Ξ)]1−b

{
a + (1− a)

[
d(Ξ)

c(Ξ)

]1−b
}

Ud(Ξ)

Uc(Ξ)
=

(
1− a

a

)[
d(Ξ)

c(Ξ)

]−b

ezfn(Ξ) = (1− α)
y(Ξ)

n(Ξ)

ezfk(Ξ) = α
y(Ξ)

k
.

E MRS between money and consumption in the
simpli�ed CIA-timing model

E
{

Uc[c(Ξ′),m(Ξ′),1−n(Ξ′)]
1+π(Ξ′)

[
1 + Um[c(Ξ′),m(Ξ′),1−n(Ξ′)]

Uc[c(Ξ′),m(Ξ′),1−n(Ξ′)]

]}

E
{

Uc[c(Ξ′),m(Ξ′),1−n(Ξ′)]
1+π(Ξ′)

}

= 1 + E

{
Um [c(Ξ′),m(Ξ′), 1− n(Ξ′)]
Uc [c(Ξ′), m(Ξ′), 1− n(Ξ′)]

}

+Cov

{
Uc [c(Ξ′),m(Ξ′), 1− n(Ξ′)]

1 + π (Ξ′)
,
Um [c(Ξ′),m(Ξ′), 1− n(Ξ′)]
Uc [c(Ξ′),m(Ξ′), 1− n(Ξ′)]

}

= 1 + i′(Ξ)

neglecting the second-order terms we get

E

{
Um [c(Ξ′),m(Ξ′), 1− n(Ξ′)]
Uc [c(Ξ′),m(Ξ′), 1− n(Ξ′)]

}
= i′(Ξ).
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F Simpli�ed CIA timing model: Log-linearization
It is necessary to introduce an additional state variable it in order to solve the
model by the Uhlig toolbox.

λ̃t = Ũc,t = Ω1c̃t + Ω2d̃t(
1 + η

n̄

1− n̄

)
ñt = ỹt + λ̃t

ỹt = αk̃t−1 + (1− α)ñt + z̃t( ȳ

k̄

)
ỹt =

( c̄

k̄

)
c̃t + k̃t − (1− δ)k̃t−1

r̂t = α
( ȳ

k̄

) [
ỹt − k̃t−1

]

Et

[
λ̃t+1 − λ̃t + r̂t+1

]
= 0

Π̄Etr̂t+1 = ı̂t − R̄Etπ̂t+1

Et

{
d̃t+1 − c̃t+1

}
= − 1

bĪ
ı̂t

m̃t = m̃t−1 +
1

1 + Ξ̄
ût − 1

Π̄
π̂t

d̃t = m̃t−1 − 1

Π̄
π̂t
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